SAMMIpy Documentation
Release 0.0.12

Andre Schultz

Apr 07, 2020

Contents:

1 Installation and Usage 3
2 Documentation 5
2.1 ClASSES . v v v o e e e e e 5
2.2 Functions i e e e e e e e 6
2.3 Exampleso e e e e e e e e e 7

SAMMIpy Documentation, Release 0.0.12

SAMMIpy is a tool for visualizing metabolic networks and metabolic network simulations using SAMMI directly
from Python using the COBRApy toolbox. This documentation describes the Pythons wrapper for this visualization.
You can view the full documentation for SAMMI here, and the documentation for COBRApy here.

If you use SAMMI for your project, please cite the following publication: Schultz, A., & Akbani, R. (2019). SAMMI:
A Semi-Automated Tool for the Visualization of Metabolic Networks. Bioinformatics.

Contents: 1

https://sammi.readthedocs.io/en/latest/index.html
https://cobrapy.readthedocs.io/en/stable/
https://doi-org.stanford.idm.oclc.org/10.1093/bioinformatics/btz927

SAMMIpy Documentation, Release 0.0.12

2 Contents:

CHAPTER 1

Installation and Usage

SAMMIpy can be installed via pip by running the following code in the command window:

’pip install sammi

To update the package use:

’pip install sammi -U

To use the package add the following code to your python script:

’import sammi

Some of the functionality available in SAMMI, such as PDF download and data upload, are not directly available
though this plugin. To use these functions download the model in a SAMMI format and upload the file in the SAMMI
web interface at www.SammiTool.com.

For a full description of this plugin please refer to the remaining sections of this documentation.

https://bioinformatics.mdanderson.org/Software/SAMMI/

SAMMIpy Documentation, Release 0.0.12

4 Chapter 1. Installation and Usage

CHAPTER 2

Documentation

2.1 Classes

Three classes used to render visualizations are defined in the SAMMIpy package. This section describes these classes.
For details on how to use them please refer to the subsequent sections. These classes are the following:

2.1.1 Parser

The class sammi.parser () defines an object to be used in parsing the model into subgraphs upon loading. Al-
though there are many ways to partition models using SAMMIpy, one of the options is defining a vector of sammi .
parser () objects where each object defines one subgraph. The sammi . parser () class takes three inputs:

* reactions: List. Reaction IDs of reactions to be included in the subgraph.
* name: String. Name of the subgraph to be displayed in the visualization.

* flux: List. Optional. Values to be mapped as reaction colors. Defaults to all NAs where no data is mapped.

2.1.2 Data

The class sammi .data () defines which data to be mapped onto the visualization and how. Similarly to the previous
class, a vector of sammi . data () objects can be defined to plot multiply data types. The class takes five inputs:

* group: String. Has three options: reactions, metabolites, and 1inks. Defines where the data will be
mapped.

 kind: String. Has two options: color and size. Defines what kind of data to map onto the defined group.
color can be user with reactions and metabolites to define node and link color. color cannot be
used with 1inks, as link color matches the corresponding reaction node color. size can be used to define
node radius or link width.

 data: Numerical array where each row defines a reaction or metabolite and each column defines a condition to
be mapped. Should have size 1en (ids) by len (conditions).

SAMMIpy Documentation, Release 0.0.12

* ids: List of strings. Reaction or metabolite IDs where the data will be mapped. Should be IDs of the variable
defined in group.

* conditions: List of strings. Names to be used for each data condition mapped.

2.1.3 Options

The class sammi .options () defines additional options of how the model is plotted. This class takes three fields:

* htmlName: Name of html file where the output will be written. Defaults to index_load.html. If this option
is not defined, the file index_load.html will be continuously overwritten every time a new visualization is
generated. If users wish to save a visualization to a different file, or wish to visualize multiple maps at once, this
parameter can be changed.

¢ load: Boolean, defaults to True. Whether or not to load the visualization on a new browser tab. If this
parameter is set to false, new visualizations can be rendered by refreshing a previously loaded tab or by using
the sammi . openmap () function.

* jscode: String. Sequence of JavaScript commands to be run following the rendering of the visualization. This
can used, for example, to change coloscales and subgraphs upon loading the model. This options requires
familiarity with JavaScript and the SAMMI html layout.

2.2 Functions

There are three main user functions for rendering and plotting SAMMI visualizations. These are:

2.2.1 Plotting

The function sammi.plot () is used to plot SAMMI visualizations in combination with the SAMMI classes. The
function inputs are:

* model: COBRApy model to be visualized.
 parsert: How the model is to be parsed and visualized. There are several options for this parameter:

— Empty vector: Default. Does not parse the model and plots all reactions and metabolites in a single graph.
Not recommended for medium to large-size models.

— string: One of two options. (1) A reaction or metabolite field (e.g. subsystem or compartment), in
which case a subgraph will be drawn for each unique value associated with that field. (2) A path to a file
specifying a previously drawn SAMMI map, in which case that map will be rendered.

— List of strings: List of reaction IDs to be plotted. A single graph will be plotted containing only the defined
reactions.

— List of sammi.parser() objects: A subgraph is plotted for each sammi .parser () object defined in the
list.

* datat: List of sammi.data () objects. Each object will be plotted separately in the visualization.

 secondaries: List of strings or regular expressions. Any metabolite, in any subgraph, matching any of the regular
expressions defined here will be shelved. These metabolites are not deleted and can be returned to the graph
through the floating menu window. For details of this functionality please refer to the SAMMI documentation.

* opts: sammi.options () object. Additional options for loading the map.

6 Chapter 2. Documentation

SAMMIpy Documentation, Release 0.0.12

2.2.2 Opening a visualization

the function sammi.openmap () is used for opening previously drawn visualizations. It takes a single in-
put: a previously drawn html file name. For instance, sammi . openmap ("index_load.html") or sammi.
openmap ("index_load") open the default file to which maps are exported.

2.2.3 Running SAMMIpy example

Several examples are built into the SAMMIpy package to exemplify and test the package functionalities. These
examples are described in the following section as well as the Jupyter Notebook provided. To use this function run
sammi.test (n) where n is a number from zero to eleven describing one of the examples.

2.3 Examples

Here we provide several simple examples for the use of SAMMIpy. Each example is supposed to be more complex
than the next, and is intended to exemplify as many different functionalities of SAMMIpy as possible. Each example
can be run using sammi . test (n), where n refers to the example number provided here.

To start, load the following libraries:

import cobra
import cobra.test
import numpy as np
import sammi

2.3.1 0. Plot entire model

To plot the entire model simply call sammi.plot () on the COBRA model. This is not advisable for medium to
large models as the visualization may be too large to render.

#Get sample model to plot

model = cobra.test.create_test_model ("textbook")
#Plot file to default index_load.html

sammi.plot (model)

2.3.2 1-2. Divide the model into subgraphs using model annotation

1. Maps can be divided into subgraphs using model annotation. For instance, users can plot a subgraph for each
annotated reaction subsystem:

#Get sample model to plot

model = cobra.test.create_test_model ("salmonellam)
#P1lot

sammi.plot (model, 'subsystem')

2. Or plot a map for each cellular compartment:

#Get sample model to plot

model = cobra.test.create_test_model ("textbook™)
#Plot

sammi.plot (model, 'compartment ')

2.3. Examples 7

SAMMIpy Documentation, Release 0.0.12

2.3.3 3. Plot and visualize multiple maps

By default, SAMMI outputs the visualization to a file names index.load.html in the package folder. Therefore,
by default, every time a new visualization is generated this file is overwritten. The name of the output file can be
changed, however, in order to not overwrite files. For instance:

#Get sample model to plot

model = cobra.test.create_test_model ("salmonella™)

#Generate options. This will not load a new tab upon generating the visualization
opts = sammi.options(load = False)

#Plot file to default index_load.html

sammi.plot (model, 'subsystem',opts = opts)

#Generate option for new name

opts = sammi.options (htmlName = 'index_ load2.html',load = False)

#Plot file to default index load.html

sammi.plot (model, 'compartment', opts
#0pen files in new tabs

sammi .openmap ('index_load.html")
sammi .openmap ('index_load2.html")

opts)

2.3.4 4. Plot only user-defined reactions

For a quick visualization of a given group of reactions users can plot only certain reactions in a single graph.

#Get sample model to plot
model = cobra.test.create_test_model ("textbook™)

#Define reactions

tca = ['ACONTa', 'ACONTb', 'AKGDH', 'CS', 'FUM', 'ICDHyr', 'MDH', 'SUCOAS']
gly = ['ENO','FBA', 'FBP', 'GAPD','PDH', 'PFK', 'PGI', 'PGK', 'PGM', 'PPS', 'PYK', 'TPI']
ppp = ['G6PDH2r','GND', 'PGL','RPE', 'RPI', 'TALA','TKT1', 'TKT2']

dat = tca + gly + ppp

#P1lot
sammi.plot (model, dat)

2.3.5 5. Shelve secondary metabolites on load

In order to shelve secondary metabolites upon rendering the model, define the secondaries input to the plot
function. If this argument is defined, any metabolite, matching any of the defined regular expressions, will be shelved.
These metabolites can be returned to the graph using the floating menu window.

#Get sample model to plot
model = cobra.test.create_test_model ("textbook™)

#Define reactions

tca = ['ACONTa', 'ACONTb', 'AKGDH','CS','FUM', 'ICDHyr', 'MDH', 'SUCOAS']
gly = ['ENO','FBA', 'FBP', 'GAPD', 'PDH', 'PFK', 'PGI', 'PGK', 'PGM', 'PPS', 'PYK', 'TPI"']
ppp = ['G6PDH2r','GND', 'PGL','RPE', 'RPI', 'TALA', 'TKT1', 'TKT2']

dat = tca + gly + ppp

#Define secondaries
secondaries = ['"h_.S$',""h20_.$',"'"atp_.$',""adp_.",""pi_."',""02_.",""co2_.", " nad_.",
—'"nadh_."', ""nadp_.", '"nadph_."]

(continues on next page)

8 Chapter 2. Documentation

SAMMIpy Documentation, Release 0.0.12

(continued from previous page)

#Plot
sammi.plot (model, dat, secondaries = secondaries)

2.3.6 6. Plot multiple user-defined subgraphs

Users can also plot multiple subgraphs with their defined reactions. To do so, define an instance of sammi .
parser () for each subgraph:

#Get sample model to plot
model = cobra.test.create_test_model ("textbook™)

#Define reactions

tca = ['ACONTa', 'ACONTb', 'AKGDH', 'CS', 'FUM', 'ICDHyr', 'MDH', 'SUCOAS']
gly = ['ENO','FBA', 'FBP', 'GAPD', 'PDH', 'PFK', 'PGI', 'PGK', 'PGM', 'PPS', 'PYK', 'TPI"']
ppp = ['G6PDH2r','GND', 'PGL','RPE', 'RPI', 'TALA','TKT1', 'TKT2']

#Initialize class
dat = [sammi.parser ('TCA cycle',tca),
sammi.parser ('Glycolysis/Gluconeogenesis',gly),
sammi.parser ('Pentose Phosphate Pathway', ppp)]
#P1lot
sammi.plot (model, dat)

2.3.7 7-8. Data mapping

7. Add data to plotted subgraphs. In this example we are generating random data and mapping it onto the desired
reactions. Using sammi .parser () users can directly map data as reaction colors:

#Get sample model to plot
model = cobra.test.create_test_model ("textbook™)

#Define reactions

tca = ['ACONTa', 'ACONTb', 'AKGDH','CS','FUM', 'ICDHyr', 'MDH', 'SUCOAS']
gly = ['ENO','FBA','FBP', 'GAPD', 'PDH', 'PFK', 'PGI', 'PGK', 'PGM', 'PPS', 'PYK', 'TPI']
ppp = ['G6PDH2r','GND', 'PGL', 'RPE', 'RPI', 'TALA', 'TKT1', 'TKT2']

#Initialize class
dat = [sammi.parser ('TCA cycle',tca,np.random.rand(len(tca))),
sammi.parser ('Glycolysis/Gluconeogenesis',gly,np.random.rand (len(gly))),
sammi.parser ('Pentose Phosphate Pathway', ppp,np.random.rand(len (ppp)))]
#P1ot
sammi.plot (model, dat)

8. Alternatively, users can map data onto the map using sammi .data (). The following example maps five sets
of random data, each in a different way, with three conditions each.

#Get sample model to plot
model = cobra.test.create_test_model ("salmonella")

#Get reactions and metabolites
rx = [f.id for f in model.reactions]
met = [m.id for m in model.metabolites]

(continues on next page)

2.3. Examples 9

SAMMIpy Documentation, Release 0.0.12

(continued from previous page)

#Generate random data to plot
datat = [sammi.data('reactions','color',np.random.rand(len(rx),3),rx,['cl’','c2"',"'c3
‘—)'J)I
sammi.data ('reactions', 'size',np.random.rand(len(rx),3),rx, ['cl','c2','c3']),
sammi.data ('metabolites', 'color',np.random.rand(len (met),3),met, ['cl', 'c2',"'c3

sammi.data ('metabolites', 'size',np.random.rand(len(met),3),met, ['cl','c2", 'c3
sammi.data('links', 'size',np.random.rand(len(rx),3),rx,['cl','c2','c3"'])]

#Introduce NAs
for k in range(len(datat)):
for i in range(datat[k].data.shape[0]):
for j in range(datat[k].data.shape([l]):
if np.random.rand (1) [0] < O.1:
datat [k] .data[i, j] = float('nan'")

#Define secondaries
secondaries = ['"h_.$','""h20_.S$", ""atp_.$', ""adp_.", ""pi_.",""02_.",""co2_.",""nad_.",
—'*nadh_."', '""ndap_.", '"ndaph_."]

#Plot
sammi.plot (model, 'subsystem',datat = datat,secondaries = secondaries,opts = sammi.

—options (load=True))

2.3.8 9. Change map upon load

SAMMI options also allow users to change visualization parameters upon loading the model. This can be done by
adding JavaScript code to the end of the visualization. To use this advanced feature users need to be familiar with
JavaScript and need to familiarize themselves with the SAMMI visualization html layout. The following code loads
the previous map, changes the visualization to the Citric Acid Cycle subgraph, and changes the colorscale upon
loading.

#Get sample model to plot
model = cobra.test.create_test_model ("salmonella')

#Get reactions and metabolites
rx = [f.id for f in model.reactions]
met = [m.id for m in model .metabolites]

#Generate random data to plot
datat = [sammi.data('reactions','color',np.random.rand(len(rx),3),rx,['cl’','c2"','c3
='1),
sammi.data ('reactions', 'size',np.random.rand(len(rx),3),rx,['cl','c2','c3']),
sammi.data ('metabolites', 'color',np.random.rand(len (met),3),met, ['cl', 'c2',"'c3

sammi.data ('metabolites', 'size',np.random.rand(len(met),3),met, ['cl’','c2", "'c3
sammi.data('links', 'size',np.random.rand(len(rx),3),rx,['cl','c2',"'c3"'])]
#Introduce NAs
for k in range(len(datat)):

for i in range(datat[k].data.shape[0]):
for j in range(datat[k].data.shape([l]):

(continues on next page)

10 Chapter 2. Documentation

SAMMIpy Documentation, Release 0.0.12

(continued from previous page)

if np.random.rand(1l) [0] < O0.1:
datat [k] .data[i, j] = float('nan'")

#Define secondaries
secondaries = ['"h_.$','"h20_.S$"', ""atp_.$', ""adp_.", ""pi_.",""02_.",""co2_.",""nad_.",

—'*nadh_."', '"*ndap_.", '"ndaph_."]

#Generate javascript

jscode = 'x = document.getElementById("onloadfl");' + \
'x.value = "Citric Acid Cycle";' + \

'onLoadSwitch(x); " + \

'document .getElementById ("fluxmin") .valueAsNumber = -0.1;"' + \
'document .getElementById ("fluxmax") .valueAsNumber = 0.1;"' + \
'"fluxmin = -0.1; fluxmax = 0.1;' + \

'document .getElementById ("edgemin") .value = "#££0000"; "' + \
'document .getElementById ("edgemax") .value = "#0000f£f"; "' + \

'document .getElementById ("addrxnbreak") .click ();"' + \

'document .getElementsByClassName ("rxnbreakval") [0] .value = 0; "' + \
'document .getElementsByClassName ("rxnbreakcol") [0] .value = "#c0c0cO"; "' + \
'defineFluxColorVectors () ;"'

#Plot
sammi.plot (model, 'subsystem',datat = datat, secondaries = secondaries,opts = sammi.
—options (load=True, jscode=7jscode))

2.3.9 10. Type-lll Pathways

Type-III pathways are thermodynamically infeasible loops within the model that do not involve exchange reactions.
Here we visualize some of these pathways. We first block all exchange reactions and perform FVA to determine
reactions still able to carry flux. Next, we optimize each of these reactions using pFBA to determine the smallest
possible Type-III pathway involving the reaction. This example might take a couple of minutes to run.

#Import

from cobra.flux analysis import flux_variability_analysis

from cobra.flux analysis.loopless import add_loopless, loopless_solution
#Get model and tailor

model = cobra.test.create_test_model ("salmonellam)
model.reactions.get_by_id('ATPM'") .lower_bound = 0

model.reactions.get_by_id('ATPM'") .upper_bound = 1000
rxns = [r.id for r in model.reactions]
#Close exchange reactions
medium = model.medium
for i in model.medium:
medium[i] = 0.0
model .medium = medium
#Perform FVA on the model
fva = flux_variability_analysis (model, fraction_of_optimum = 0)
fva.maximum[fva.maximum < 1e-03] = 0
fva.minimum[fva.minimum > -1e-03] = 0
#Initialize
dat = []

#Parse through positive reactions
for i in range(len(fva.maximum)) :
if fva.maximum([i] != O:
model.objective = model.reactions[i]

(continues on next page)

2.3. Examples 11

SAMMIpy Documentation, Release 0.0.12

(continued from previous page)

model.optimize ()
flux = cobra.flux_analysis.pfba (model)
flux.fluxes[abs (flux.fluxes) < le-3] = 0
tmp = abs (flux.fluxes) >= le-3
dat .append (sammi.parser (model.reactions[i] .id + ' positive',list (flux.
—fluxes|[tmp] .index),list (flux.fluxes|[tmp] .values)))
#Parse through negative reactions
for i in range(len(fva.minimum)) :
if fva.minimum[i] != O:
model.objective = model.reactions[i]
model.reactions[i] .objective_coefficient = -1
flux = model.optimize ()
flux = cobra.flux_analysis.pfba (model)
flux.fluxes[abs (flux.fluxes) < le-3] = 0
tmp = abs (flux.fluxes) >= le-3
dat .append (sammi.parser (model.reactions[i] .id + ' negative',list (flux.
—fluxes[tmp] .index), list (flux.fluxes[tmp] .values)))
#P1lot
sammi.plot (model, dat)

2.3.10 11. Metabolic Adaptation
Visualize adaptation to gene knockout. In short, the following code performs the following steps for each reaction we
wish to simulate.

1. Simulate reaction knockout and get maximum growth rate on KO model.

2. Set upper and lower bound growth rate on wild-type model to KO growth rate and calculate a loopless flux
distribution.

3. Using MOMA, calculate a flux distribution in the knockout strain that closely matches the flux distribution in
the previous step.

4. Find the difference in flux distributions in steps two and three and plot them.

This process allows users to visualize how the flux was rewired in the knockout strain. This example may take a couple
of minutes to run.

from cobra.flux analysis import single_reaction_deletion, moma
from cobra.flux analysis.loopless import add_loopless, loopless_solution

#Get model

model = cobra.test.create_test_model ("ecoli™)

#Set objective

model.objective = "Ec_biomass_1J01366_core_53p95M"
#Initialize parsing list

dat = []

#Define reactions to simulate knockout

korxns = ['ENO', 'FBA', 'TKT2', 'TALA', 'FUM', 'MDH', 'GAPD', 'TPI']

#Simulate reaction knockout
for r in korxns:
with model:
#Save original bounds
1b = model.reactions.get_by_id(r).lower_bound
ub = model.reactions.get_by_id(r) .upper_bound
#Set objective to KO

(continues on next page)

12 Chapter 2. Documentation

SAMMIpy Documentation, Release 0.0.12

(continued from previous page)

model.reactions.get_by_id(r) .knock_out ()

objval = model.optimize () .objective_value

model.reactions.get_by_id("Ec_biomass_1J01366_core_53p95M") .upper_bound =_
—objval

model.reactions.get_by_id("Ec_biomass_1J01366_core_53p95M") .lower_bound =
—objval

#Restore bounds
model.reactions.get_by_id(r).lower_bound = 1lb
model.reactions.get_by_id(r) .upper_bound = ub
#Calculate objective

model.optimize ()

flux = loopless_solution (model)

#Calculate adaptation
model.reactions.get_by_id(r) .knock_out ()

koflux = cobra.flux_analysis.moma (model, solution=flux)
#Save
tmp = flux.fluxes - koflux.fluxes

bol = abs (tmp) > le-7

x = tmp[bol]

dat .append (sammi.parser(r + ' — ' + str(round(objval,4)),list (x.index),
—list(x)))

#Restore bounds again

model.reactions.get_by_id(.lower_bound = 1lb

model.reactions.get_by_id(.upper_bound = ub

model.reactions.get_by_ id("Ec_biomass_1J01366_core_53p95M") .upper_bound = 1000

model.reactions.get_by_ id("Ec_biomass_1J01366_core_53p95M") .lower_bound = 0

r)
r)

#Define secondaries

secondaries = ['"h_.S',""h20_.$",

—'?*nadh_."', ""ndap_.", ""ndaph_.",\
'~g8_.$"',"'""g8h2_.S$", ""nadp_."', ""nadph_."]

#Plot difference in scatterplot

sammi.plot (model,dat, secondaries = secondaries)

1A

atp_.$','""adp_."', "Mpi_.",""02_.",""co2_.",""nad_.",

2.3. Examples 13

	Installation and Usage
	Documentation
	Classes
	Functions
	Examples

